I have also tested ABS printing using the Polyken 296FR tape that I was recently testing with PLA filament as a surface for the build plate of a 3D printer. The results with the use of ABS filament were as good as what the PLA test showed – good adhesion and easy removal of the 3D printed part.

Using regular ABS filament with 230 degrees Celsius for the extruder and 110 C for the heated build plate covered with the Polyken tape did provide really good results.

People that have used ABS filament know that it is much more prone to warping at the edges due to the material shrinking more when cooling down, so the use of a heated build plate is one way to try to avoid possible issues, but the surface of the build plate is also important.

The Polyken 296FR tape does provide good adhesion and easy removal and with the help of the heated build plate there is no warping or even if there is it is really minimal and a subject to some slight adjustments.

The end result is good adhesion, easy removal and no warping of the edges thus no deformed or failed prints when using ABS filament as well as with PLA as I have previously reported. It seems that this unexpected contender for a tape that was not originally intended to be used for 3D printing purposes may actually turn out to be an interesting and surprisingly well working solution. I still need to do some testing with some more exotic filaments, but so far the results are pretty promising…

The surface of the build plate of a 3D printer is very important not only for successful and problem free 3D printing, but also for good quality and reliability of the device. There are a number of specially developed surfaces and coatings developed for 3D printers and there are some others that were not originally intended, but also work well. One of the best build plate surfaces for 3D printers that I have found so far is the BuildTak, though while it works good it is still not perfect and I’m still experimenting. My latest experiment is the use of a bit unusual tape to cover the build plate, an aircraft grade flame retardant fiberglass take – Polyken 296FR.

The Polyken 296FR is not a common item and is pretty expensive as it needs to meet some specific requirements for use in aircrafts, but since I got some and I wanted to try it out . The tape is essentially a very strong and flame retardant fiberglass cloth on top with an acrylic adhesive surface on the bottom.

For more information about the Polyken 296FR tape (PDF)…

There are pretty much two things that a tape covering the build plate needs to do – provide good adhesion of the printed parts and after the print is ready to allow for easy removal of the 3D printed part. Getting both of these balanced right is actually pretty hard as surfaces that usually offer good adhesion also make it hard to remove the printed 3D part after it is ready. Surprisingly the Polyken take actually does offer a really good balance between the two and since it is flame retardant it does not have a problem with heated build plates.

The tape also conducts heat well as there is just a slight drop from the set temperature of 50 degrees Celsius for the build plate when printing with PLA filament. The tape is set to work at up to 135 degrees C, so it should not have trouble with ABS filaments that do require higher temperature for the build plate to print properly (100-120 C), though I’m yet to try printing ABS on it.

Using regular cheap PLA filament printing at 230 C with 50 C for the heated build plate. The filament sticks well to the surface and is really easy to be removed after that.

The texture that is left on the bottom of 3D printed parts is also really nice due to the fiberglass cloth being woven. So this Polyken tape actually does work surprisingly good for 3D printing PLA filaments, though as I already mentioned the price and being not so easy to obtain does not make it a popular choice for build surface. Next I’m going to be trying with ABS filament and higher temperature for the heated build plate to see how well it will work, but so far I’m pretty happy with the results using PLA.

Low Polygon 3D models or Low Poly in short are a popular trend lately when it comes to 3D printing as they do seem to be easier on the building process for the physical model and the end result is really nice most of the time. So Looking for Low Poly model on websites such as Thingiverse for example can produce hundreds of results with nice looking low polygon count 3D models ready for free download and printing. What if you want to make a Low Poly version of a detailed mesh of a 3D model you already have, but you may not be very good or at all with 3D modeling software to produce it? Well, I figured that I can tell you how to easily do it without the need of extensive knowledge or having to deal with too complex software…

Choosing a Detailed 3D Model with a Lot of Polygons
Do note that not all 3D models will look nice if you reduce their number of polygons in order to make them into a Low Poly version of the original model, some will just not be Ok, others might end up surprisingly good, so do try and experiment. I have chosen a 3D model of a Lion Head to work with in this guide to illustrate the process. It might not be the best one for Low Poly version, though it does work pretty well for the purposes I need it… again try and experiment with different models to see what works better and what not.

What you need to look for is a 3D model that is already pretty detailed and comes with a lot of polygons, so that you can reduce them significantly. 3D models with not that many polygons building them up that already may look a bit blocky are usually not a good source of material. I have already covered an easy tutorial on how to make lower polygon count 3D models using Blender look smoother, so you might want to take a look at that earlier post.

How to Easily Make a Low Poly Version
The software that I will be using for this is called Autodesk Meshmixer, it is a free application that actually has some pretty nice features available for working with 3D models that will be later on 3D printed. So it is a nice tool to have in your arsenal if you are an owner of a 3D Printer and are using it to print various 3D models, already made by somebody else or designed by you. So even if not for the easy Low Polygon 3D model making you might want to check the other useful features available in that software…

You need to start by Importing the 3D model of the object that you want to create a Low Poly version of, just use the Import button and select the file you are going to be working with. The software supports OBJ, PLY, STL, AMF and MIX file formats and the most likely one you are going to be using here is the STL as it is the most common one when talking about 3D printers. You can of course also start with an OBJ file for a 3D model of something that was not originally made for 3D printing, but for some other use or any of the other supported file formats.

The Lion Head 3D model I’m using for this example is in STL file format as it was originally designed for 3D printing already. The 3D model of the head uses 183898 triangles (polygons), so it is not a very simple model and you can see that by zooming in and checking the many details that it originally has… details that would most likely be lost when 3D printed due to the lower resolution that 3D printers normally use. Fortunately the goal here is to significantly reduce the large number of polygons and get a Low Poly version of the model ready for 3D printing.

The next step is to select the complete 3D model, to do that just press the CTRL + A key combination and you will see that the gray rendering of the model becomes a kind of orange. This means that anything you do as an operation from now on is going to be applied on the whole surface of the model, this is exactly what is needed when reducing the number of polygons. You can of course also make partial selection and work with it instead of the complete surface of the model, but for the current goal that is not needed.

From the Select menu you need to go to Edit and then choose Reduce, alternatively you can just press the Shift + R key combination to get to the same menu. This is where the fun part starts as you need to do some experimenting in order to figure out what is the best looking result…

In the Reduce panel change from Percentage to Triangle Budget as this just makes it easier to work with and get the desired Low Poly result as you may go to below 1% on some higher polygon count 3D models. Then just click on the value on the right of Tri Count and type a new value as a number of Polygons and hit Enter to see the preview. To apply the desired value after previewing it you need to click on the Accept button, prior to that you can experiment with different values.

Normally getting a good Low Poly version of a 3D model means that you need to go for something in between 1000 and 3000 triangles in the Reduce menu, though it also depends on the 3D model as well. You might need to go lower or higher than 1000-3000, but this range should generally be where you would need to try first. In the example Lion Head 3D model 1000 polygons are simply not enough to provide a good looking Low Poly result, so I need to go higher. At 2000 polygons things are looking better, but going a bit higher than that at about 2500 makes it even better… you can also go to 3000, but going much higher than that is not going to provide the nice low polygon look that I’m looking for.

When you are ready with the Low Poly version you will need to save the new 3D model, make sure you don’t overwrite the original high polygon count version. Just go to File and Export and type a new filename, make sure you save as STL file format, so that you would be able to easily open it up in your 3D printing software. Then just open it up and 3D print it from your slicer…

The image above shows a side by side comparison of the original high polygon count model (on the left) and the Low Poly version that I made using the Meshmixer software (on the right). The low polygon count model is with just 3000 triangles as opposed to the original that uses more than 180 thousand polygons.

This is the preview of the two models as the way they will look when 3D printed using 0.01mm layer height (high level of detail), as you can see and as I have mentioned already there is some loss of detail in the high poly count model due to the lower resolution that the 3D printer uses (even when printing in high quality)…