Posts Tagged ‘smoothing 3D prints

In a recent guide on how to 3D Print Your Favorite Pokemon or Just About Any Pokemon I have pointed you to a website offering you to download 3D models of pretty much all of the Pokemons out there. Then you can use these 3D models along with a 3D printer in order to get a 3D print of your favorite pocket monster, but the quality of the resulting prints will not be too high due to the low polygon count of these models…

The good news is that there is a really easy way to increase the number of triangles/polygons of the 3D models of Pokemon without you having to be good with any kind of 3D modeling software or to actually buy any such program. Using the free application Blender and literally by pressing two keys you can get a smoother 3D model with higher number of polygons that you can export in STL and then get into your 3D printing software. This trick will work with other lower polygon count 3D models though the results may vary, so it is not applicable to the current case where we want to get a better looking and smoother 3D models of Pokemons for 3D printing them.

What is Blender and How to Get It

Blender is a free and open source 3D creation suite. It supports the entirety of the 3D pipeline—modeling, rigging, animation, simulation, rendering, compositing and motion tracking, even video editing and game creation.

It may sound complicated and also for a user that wants to start with 3D modeling software such as Blender the interface of the program may seem quite complex, but for the purpose of this guide you don’t have to know the software or how to work with it. You just need to follow a few simple step and take advantage of one of the functions that it supports in order to get the desired results. So what you need first is to download the free Blender software, it is available for multiple operating systems – Windows, Mac OSX and Linux.

Download the free Blender software from the official website of the project…

Start by Opening Up the 3D Model of a Pokemon
First you need to download the 3D model of the Pokemon you want to work with or download all of the 3D models, you can do that from the Root of Evil Studios’ website. The archive does contain 3D models of the Pokemon in multiple formats, as I have explained in the previous post you can directly use the OBJ file to import in your 3D printer software (should work with most slicers). For the purposes of this guide however we are going to be working directly with the Blender files that are also available, though the software can also Import OBJ and a few other 3D model formats.

So in order to load up a 3D model of a Pokemon just double click on the blender file in the archive you have downloaded. Alternatively you can open up the Blender software and go to the File menu and choose Open, then select the Blender file you want to open. In order to Import another 3D model format such as an OBJ file you need to open the File menu, go the Import option and select what type of 3D file you are going to be opening, then just choose the file and you are ready. It is really easy to do that as opening the 3D model is 1/3 of the work you need to do and the whole thing is really easy and simple.

How to Increase the Number of Polygons
As soon as you open up the 3D model you will see the same lower polygon version of the Pokemon that you would see in the preview of the 3D printer software when opening up the OBJ file for 3D printing. In this example I’m using the 3D model of the Evee Pokemon that by default has just 4934 polygons and the result is a bit blocky or what is usually referred to a low poly 3D model. What you need to do now is to automatically increase the number of triangles/polygons that the 3D model uses and thus smooth its surface – more polygons means smaller building blocks for each part of the model and finer detail.

Increasing the number of polygons with Blender is as easy as just pressing a two key combination, told you it is really easy to do it. So just select the 3D model with a right click and press CTRL + 1 and watch what happens. You will instantly see a much smoother and more detailed in terms of polygons used 3D model, for the Evee character I’m using as an example we get from 4934 polygons up to 29604 or with other words 6 times more triangles. You will see that things look much better now, though there is a little more than can be done to get an even better result – increase the number of polygons used. If you want to get back to the starting point and the 3D model with just 4934 polygons you can press CTRL + 0, you can also use this to check what the before/after will look like.

Going for some more polygons with CTRL + 2 will bring even better result with an increase of the total number of triangles building the 3D model to 118416 – this is 24 times the original polygon count. You will see that the 3D model looks even better now – smoother and more detailed than the original or the first step of increase of the number of polygons, though some places could still benefit a bit more from a little extra polygons.

More polygons are available at your disposal, just press CTRL + 3 to get them. This will make your total number of triangles/polygons used for the 3D model all the way up to 473664 or almost half a million. This is 96 times the original count of the polygons used, so it is normal that the 3D model will be much smoother and detailed than the original low polygon count version. At this point there is no need to add extra polygons as they will hardly make any easily visible improvement anymore, but will still make the 3D model more complex and harder to be processed by the 3D printing software. You can still try by increasing the number you press along with CTRL to get even more polygons used, but again there is really no point in making the 3D model too complex as you might have trouble printing it up.

When you are ready with the right increase of the number of polygons for the 3D model to make it smoother and more detailed you need to export it in STL file format that you can directly load up in pretty much any 3D printing software (slicer). To do that just open the File menu, go to Export and select STL, then choose a name and where to save the file and click on the Export STL button. This is it, you can close Blender after that and open the 3D printing software you use. You have just increased the number of polygons and made the 3D model of the Pokemon you want to 3D print more detailed and with much smoother surface without having to deal with complex stuff or having to learn how to use a 3D modeling software such as Blender, though if you are interested you can still learn a bit more about it and how to use additional functionality.

Again, don’t go increasing the number of polygons too much as it will just make everything more complex and hard for the slicer to process it, especially if you are not going to benefit from any additional quality form the extra polygons!


We continue experimenting with the use of the Smooth-On XTC-3D after we recently shared our first experience using it. This time we used Natural PLA filament for our tests as we wanted to see will the use of the XTC-3D help in improving the transparency of the printed parts. Last month there was an interesting article about using the XTC-3D for improving the clarity of the Taulman T-glase, so we wanted to see if there will be a similar effect on parts using the semi-transparent Natural PLA filament. The initial results that we’ve had with parts that we have already printed and decided to use for tests were not very good as apparently the 3D printed part with that you want to be more transparent will need to be specifically printed with thin walls. So we gave up on experimenting with improving the transparency on already 3D printed parts with Natural PLA, and while we also wanted to try out the Taulman’s tutorial for T-glase filament we had trouble with the filament sticking properly to our build plate covered with standard 3M ScotchBlue tape on the MakerBot Replicator 2 3D printer that we are using, so we have postponed testing with that material and XTC-3D for a later time as well.


What we have decided to do instead was to coat the 3D printed parts with XTC-3D, then sand them and paint them with a standard spray paint used for coloring plastic materials. We have started with a Batman logo that we have printed with Natural PLA filament, left to right on the photo: the 3D printed logo, the logo sanded with fine sanding paper getting a more matte look and then painted with black metallic spray paint. The end result is really nice and smooth surface after the sanding and painting, though we did not do great with the painting part, but we did it in a bit of a hurry. As we have mentioned the 3D printed parts that we have used here for testing are not good for testing to improve the transparency of Natural PLA filament as they are tick objects with infill like is the case of the Batman logo, but even with multiple shells and without infill it is hard to improve transparency. You would probably need to use less shells with no infill and maybe larger layer height to get better results with improved transparency on Natural PLA as the recommended setting for T-glase suggest.


The Batman logo is easier to coat with XTC-3D and sand and paint, so we decided to also try a bit more complex 3D print – a small trophy cup. We have already had a few of these printed, so it was easy to compare before and after. On the photo above you can see the 3D printed cup on the left and the same cup coated with XTC-3D and sanded on the black background. You may notice that the coated and sanded cup still does show some noticeable lines for the layers, even though the surface is actually smooth – this is a result f the transparency of the material. On the right part of the image above you can see the already painted cups, the one that is coated with XTC-3D and sanded (inside and outside) on the left part and the one that is directly painted after being printed. Again not perfect painting on our side with some dust particles getting caught by the paint, but you can clearly the very smooth surface of the coated and sanded part. Even without sanding the 3D printed parts that are coated with XTC-3D that are painted after that may look great, but sanding may help in getting the paint to stick better and be more durable on the long run. We are going to continue experimenting with the Smooth-On XTC-3D coating as we like the results so far, though it does need to getting used to and trying out different with settings for the 3D printed parts depending on what are the final results that you want to achieve.


We finally got our hands on a XTC-3D 3D print coating from Smooth-On, though it was not very easy to find it as most companies selling 3D printers and accessories for them still do not offer that product – we had to find Smooth-On partner in Europe and order it from them. We got the larger 24 oz (644 grams) package as the smaller one turned out to be cheaper than what we’ve had to pay for the shipment costs, and anyway if we liked the result after testing the coating we would want to have some more to play with. Once you get the package it is very wise to read the manual very carefully and do try the use the XTC-3D coating a few times on test prints, before actually trying to apply it to 3D printed parts that are more important. Also you would probably want to get some small size paint brushes for applying the coating to smaller 3D printed objects with more details, as using a large size brush on small 3D models is not a wise idea if you want to get good quality. Interestingly enough the XTC-3D 3D print coating can be used in multiple ways – to coat models providing a glossy and smooth surface effect, to coat them, then sand them and paint, or to apply color to the coating and coat the model with color. It all depends on what is the end result that you want to achieve in the end, what you need to be well aware of however is that properly using the XTC-3D coating does take some getting used to in order to achieve best results and it also takes some time for the coating to cure and additional time if you want to further process the 3D printed part.


We have started our testing with a 3D printed Yoda bust using PLA filament with a 0.3mm layer resolution, so the resulting print was with very easily distinguishable layers and not very smooth. The initial coating of the 3Dpritned part with the XTC-3D did make the layers of the print less apparent and the Yoda bust having a more glossy finish than what the original print had. We needed a second layer of coating with XTC-3D however in order to make the surface of the Yoda bust seem really smooth to the touch, although if looking up close you could still distinguish the texture of the different layers. The reason that you might still get to see very faint lines from the different players with a lower printing quality is that the XTC-3D coating is transparent, so even if ti makes the surface really smooth and glossy you may still need to apply some paint for 3D printed parts that use lower quality for the printing. The end results with 2 layers of XTC-3D coating to our roughly printed Yoda bust was really nice, smooth and glossy surface, though a bit of sanding on the ears and applying green paint could produce even better results after that.


Next up was trying out the Smooth-On XTC-3D coating on a few more exotic filament types – Carbon PLA from Proto-pasta, Laywoo-D3 and LayBrick from Orbi-Tech. using a 0.2mm resolution for the test prints we have applied 1 layer of XTC-3D coating to each of the objects – on the left is the normal print and on the right you can see the same 3D model with 1 layer of coating applied. The result with just a single layer was not that good, the coated 3D models got slightly more smoother, but with the layers still easily distinguishable and more noticeable was the fact that they became glossies as the normal results when printing with the filaments produce more matte look. Adding a second layer may improve things, but the highly glossy end result might not be to your liking that much and sanding and painting on top of 3D printed parts when using materials that produce carbon, wood or stone look is not the best idea as it will ruing the realistic look that they do provide.


We have also tried applying XTC-3D coating on NinjaFlex 3D printed keychain with the Nvidia logo, even though that might not be a very wise idea as this is a flexible filament. When you apply XTC-3D coating it hardens a bit the 3D printed part and make it less flexible, so this makes it unsuitable for flexible filaments as it will reduce their flexibility. After applying a single layer of coating to the 3D printed part with NinjaFlex filament we have observed the expected slight improvement in the surface feel – smoother as well as the keychain becoming glossier. Although the surface felt smooth, the topmost layer having a large surface area did not not look much more smoother tan before coating it, so XTC-3D might not work that well on flexible filaments such as NinjaFlex. The more interesting thing that we have observed is that after applying the XTC-3D on the NinjaFlex 3D printed keychain it has remained quite flexible, but stiffer than it was before the coating. You should however avoid flexing too much NinjaFlex printed parts if you have coated them with XTC-3D and also that if you apply multiple layers of coating their flexibility will most likely be reduced significantly.

So what ware our first impressions from using the Smooth-On XTC-3D coating? We are pretty satisfied with the results we got, although our first tries were not perfect we quickly got the hand of using the coating and the results started improving. When you get used to take advantages that the XTC-3D coating provides and you properly use it on 3D printed parts you can achieve really nice results in terms of final quality of the things you 3D print. The coating however is not perfect and suitable in all cases and for all kinds of materials, so you should be careful how and when you use it. You should also be prepared to spend some time for the extra finishing if coating 3D prints with XTC-3D as it does take some time to do it and then a few hours for the coating to fully cure. If you then plan on sanding and painting the coated part it could easily take a whole day, but if properly done the end result might be something that you can hardly believe was something that was 3D printed. We are going to keep experimenting with the XTC-3D coating, so expect more of our feedback pretty soon – next up is to get more experience with sanding and painting some 3D prints after getting them coated with XTC 3D.